
JOURNAL OF
SOUND AND
VIBRATION

www.elsevier.com/locate/jsvi

Journal of Sound and Vibration 273 (2004) 1031–1045

Non-fragile HN vibration control for uncertain
structural systems

Haiping Dua, James Lamb,*, Kam Yim Szeb

aDepartment of Mechanical Engineering, Shijiazhuang Mechanical Engineering College, Shijiazhuang 050003,

People’s Republic of China
bDepartment of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong,

People’s Republic of China

Received 14 October 2002; accepted 12 May 2003

Abstract

The paper deals with the robust non-fragile HN control problem for uncertain structural systems with
additive controller gain variations. The parameter uncertainties for the mass, damping and stiffness of the
structural systems are unknown but norm bounded. Based on the HN control theory and a linear matrix
inequality formulation, a new method for designing a robust state-feedback control law is presented. The
objective is to reduce the disturbance on the controlled output to a prescribed level for all admissible
parametric uncertainties and controller gain variations. A four-degree-of-freedom building model subject
to seismic excitation is used to illustrate the effectiveness of the approach through simulation.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Active vibration control of structural systems such as large flexible space structures, tall and
slender buildings, long bridges, etc. has become an increasingly important area in engineering
practice. To date, a variety of control strategies based on H2 (LQR) and HN theories, neural
networks, fuzzy logic, adaptive control, sliding mode, independent modal space, for instance, have
been developed to attenuate the effects of structural vibration. New types of devices have been
invented in order to implement these active control schemes in practical applications. Due to
modelling errors, variation of materials properties, component non-linearities, and changing load
environments, the system description for these structural systems inevitably contains uncertainties

ARTICLE IN PRESS

*Corresponding author.

E-mail address: james.lam@hku.hk (J. Lam).

0022-460X/03/$ - see front matter r 2003 Elsevier Ltd. All rights reserved.

doi:10.1016/S0022-460X(03)00520-0



of different nature and levels [1]. These uncertainties can affect both the stability and performance
of a control system. To accommodate such possible degradation of stability and performance,
methods such as robust HN control are often used. In many literature [1–4], the uncertainties in
the mass matrix are modelled in an additive form in the inverse mass matrix which is an indirect
and unnatural way to describe and reflect the structural uncertainty. Moreover, such an approach
may lead to uncertainties appearing in the input and disturbance matrices which complicate the
controller design procedures.
The application of the standard HN control theory has an implicit assumption that the

controller can be realized exactly. However, in practice, many physical limitations lead to a loss of
precision in controller implementation, for example, the effects of finite word length in any digital
systems, round-off errors in numerical arithmetic, inherent imprecision in analog devices, etc.
Consequently, even though controllers are robust with respect to system uncertainties, they may
be very sensitive to their own uncertainties (implementation errors). Recently, much attention
have been paid to the so-called fragility problems of controllers since its initial presentation in
Ref. [5], and then followed by many discussions in Refs. [6–10], and references therein. This
controller fragility problem is basically the problem of performance deterioration of a feedback
control system due to the inaccuracies in controller implementation [11]. In particular, several
examples are presented in Ref. [5] to show that the existing H2; HN; l1; and m designs could lead to
very fragile controllers. Blanchini et al. [12] show that the searching for the optimal control
policies for an ATM network is fragile if the delay time allowed to vary (possibly an arbitrarily
small amount) with respect to the nominal value on which the design is based. Yee et al. [13]
demonstrate that using the non-fragile HN flight controllers are robustly stable and have HN

disturbance attenuation bounds with respect to some admissible controller gain variations while,
on the contrary, the standard HN flight controllers are unstable under the same controller gain
variations. As we know, one of the main shortcomings of active control for structural systems is
the possible failure of the controller, since it will cause serious damage even than that of no
control to be used. Hence, this brings a new control issue to controller synthesis such that, for a
given structural system, the resulting controller must be resilient or non-fragile with respect to its
gain variations. During the last few years, many efforts have been made to tackle the non-fragile
controller design problem for linear systems, see, e.g., Refs. [11,13–15], and references therein.
Specifically, Dorato [11] gave an overview of non-fragile controller design for linear systems. A
state feedback non-fragile HN controller design method with respect to additive norm-bounded
controller gain variations is given in Ref. [16] by using the Riccati inequality approach and the
corresponding problem for designing output feedback controller is given in Ref. [17]. Non-fragile
HN controller problem for the case of multiplicative gain variations is addressed in Ref. [14], and
non-fragile guaranteed cost control for linear systems is studied in Refs. [18,19], respectively.
These efforts benefit us to further consider the controller fragility problems for active vibration
control of structural systems.
This paper is mainly concerned with two aspects of vibration control for structural systems.

One is that robust HN disturbance attenuation for structural systems with parametric
uncertainties, especially in the mass, damping, and stiffness matrices which are unknown but
bounded, is considered. The uncertainties in the mass matrix do not require a commonly used
inverse mass matrix perturbation description. Thus, the uncertainty can be described more
naturally and does not introduce uncertainties into the control and disturbance matrices

ARTICLE IN PRESS

H. Du et al. / Journal of Sound and Vibration 273 (2004) 1031–10451032



unnecessarily. Another aspect is that a non-fragile HN state feedback controller is considered to
deal with additive controller gain variations. The results developed in this paper are given in terms
of the feasibility of some linear matrix inequalities (LMIs) which can be easily solved using
standard numerical software.
The rest of this paper is organized as follows. In Section 2, the structural system under

consideration is introduced. A non-fragile HN state feedback controller design method (dealing
with parametric uncertainties in the structural system and additive gain variations in the
controller) based on LMIs is given in Section 3. A numerical example using seismic excitation data
is provided in Section 4 to illustrate the effectiveness of the proposed technique. Finally,
concluding remarks are given in Section 5.

Notation. Rn denotes the n-dimensional Euclidean space and Rn�m the set of all n � m real
matrices, jj � jj refers to either the Euclidean vector norm or the induced matrix 2-norm. For a real
symmetric matrix W ; the notation of W > 0 ðWo0Þ is used to denote its positive (negative)
definiteness. Also, I is used to denote the identity matrix of appropriate dimensions. To simplify
notation, � is used to represent a block matrix which is readily inferred by symmetry.

2. Description of structural system

Now consider the following uncertain structural system:

ðM þ DMÞ .xðtÞ þ ðC þ DCÞ ’xðtÞ þ ðK þ DK ÞxðtÞ ¼ BuðtÞ þ BwwðtÞ; ð1Þ

where xðtÞARn is the displacement, uðtÞ is the control input, and wðtÞ is the external disturbance or
excitation. MARn�n; CARn�n and KARn�n are the mass, damping, and stiffness matrices; DM ; DC

and DK are corresponding perturbations, BARn�m is the input matrix and BwARn�p is the
disturbance matrix. By using qðtÞ ¼ ½xTðtÞ ’xTðtÞ	T; Eq. (1) can be written as

I 0

0 M þ DM

" #
’qðtÞ ¼

0 I


K 
 DK 
C 
 DC

" #
qðtÞ þ

0

B

" #
uðtÞ þ

0

Bw

" #
wðtÞ: ð2Þ

Here, wðtÞ is assumed to be an energy-bounded signal (i.e., wðtÞAL2½0;NÞ). The output or
measurement signal zðtÞ to be controlled is given by

zðtÞ ¼ CdxðtÞ þ Cv ’xðtÞ; ð3Þ

where CdARq�n and CvARq�n: The system can be rewritten as

ðEþ DEÞ ’qðtÞ ¼ ðAþ DAÞqðtÞ þBuðtÞ þBwwðtÞ; ð4Þ

zðtÞ ¼ CqðtÞ; ð5Þ

where

E ¼
I 0

0 M

" #
; DE ¼

0 0

0 DM

" #
; A ¼

0 I


K 
C

" #
; DA ¼

0 0


DK 
DC

" #
;
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B ¼
0

B

" #
; Bw ¼

0

Bw

" #
; C ¼ ½Cd Cv	:

If all of the output signals can be chosen and measured independently, the matrix C could be
identity matrix. The uncertainty DM is assumed to satisfy the following bound:

jjDMM
1jjpdo1; ð6Þ

which implies that jjDEE

1jjpdo1: Notice that the condition in Eq. (6) ensures that Eþ DE is

non-singular. Also, we have

DK ¼ LkFkEk; ð7Þ

DC ¼ LcFcEc; ð8Þ

where jjFkjjp1; jjFcjjp1; Lk; Lc; Ek; Ec are known constant matrices which characterize how the
uncertain parameters in Fk;Fc enter the nominal damping and stiffness matrices C and K ;
respectively. The uncertainties in structural system (1) satisfying (6)–(8) are said to be admissible.
Therefore,

DA ¼ 

0

Lk

" #
Fk½Ek 0	 


0

Lc

" #
Fc½0 Ec	 ¼ LkFkEk þLcFcEc ð9Þ

with

Lk ¼ 

0

Lk

" #
; Ek ¼ ½Ek 0	; Lc ¼ 


0

Lc

" #
; Ec ¼ ½0 Ec	:

The control input, utilizing both position and velocity feedback signals, is given by

uðtÞ ¼ ðFd þ DfdÞxðtÞ þ ðFv þ DfvÞ ’xðtÞ; ð10Þ

where FdARn�m; FvARn�m are the feedback gain matrices for the displacement and the velocity,
respectively, and Dfd ; Dfv their corresponding uncertainties. This can be rewritten as

uðtÞ ¼ ðFþ DFÞqðtÞ; ð11Þ

where FARm�2n is the state feedback gain to be designed, F ¼ ½Fd Fv	; and DF ¼ ½Dfd Dfv	 is a
norm-bounded gain variation in the form of [15,16],

DF ¼ Lf Ff Ef ; ð12Þ

where Lf ; Ef ; are known constant matrices of appropriate dimensions describing the uncertainty
structure, and jjFf jjp1:
Suppose TzwðsÞ denotes the closed-loop transfer function from disturbance wðtÞ to measurement

zðtÞ: The objective of this paper is to determine a state feedback controller gain matrixF such that
the HN norm of jjTzwðsÞjjN is less than a prescribed level g > 0 for all admissible uncertainties in
the structural system and gain variations inF: Such a controller is referred to as a non-fragile HN

state feedback controller.
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3. Robust non-fragile HN state feedback control

Here, we develop a solution for the problem of robust non-fragile HN state feedback control
for the structural system (4)–(5) in which both robust closed-loop stability and robust HN

performance are achieved in spite of parametric uncertainties and controller gain variations.
System (4)–(5) with the state feedback control law (11) becomes

ðEþ DEÞ ’qðtÞ ¼ ðAþ DAÞqðtÞ þBðFþ DFÞqðtÞ þBwwðtÞ; ð13Þ

zðtÞ ¼ CqðtÞ: ð14Þ

According to the assumption in Eq. (6), we can write Eq. (13) as

’qðtÞ ¼ ðEþ DEÞ

1ðAþ DAÞqðtÞ þ ðEþ DEÞ


1BðFþ DFÞqðtÞ þ ðEþ DEÞ

1BwwðtÞ

¼ ½ %Aþ %BðFþ DFÞ	qðtÞ þ %BwwðtÞ; ð15Þ

where

%A ¼ ðEþ DEÞ

1ðAþ DAÞ; %B ¼ ðEþ DEÞ


1B; %Bw ¼ ðEþ DEÞ

1Bw:

According to the Bounded Real Lemma [20], for systems (13) and (14), the following statements
are equivalent:

(1) jjTzwðsÞjjNog; g > 0; where TzwðsÞ ¼ C½sI 
 %A
 %BðFþ DFÞ	
1 %Bw is the transfer function
from w to z:

(2) There exists a matrix P > 0 such that

½ %Aþ %BðFþ DFÞ	TP þ P½ %Aþ %BðFþ DFÞ	 P %Bw CT

%BT
wP 
gI 0

C 0 
gI

2
64

3
75o0: ð16Þ

By using the uncertainty structure in Eq. (12) for DF and considering Lemma 3 in Appendix A,
it follows that inequality (16) is implied by the existence of a constant e > 0 such that

ð %Aþ %BFÞTP þ Pð %Aþ %BFÞ þ eP %BLf L
T
f
%BTP þ e
1ET

f Ef P %Bw CT

%BT
wP 
gI 0

C 0 
gI

2
64

3
75o0: ð17Þ

Define the new variable X9P
1 in Eq. (17). Pre- and post-multiplying (17) by diagðX ; I ; IÞ
and its transpose, respectively, then substituting Y ¼ FX ; and then, pre- and post-multiplying
it by

diagðEþ DE; I ; IÞ
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and its transpose, respectively, and followed by applying the Schur complement, we obtain

Y Bw ðEþ DEÞXCT

BT
w 
gI 0

CX ðEþ DEÞ
T 0 
gI

2
64

3
75o0; ð18Þ

where

Y ¼ðEþ DEÞX ðAþ DAÞT þ ðAþ DAÞX ðEþ DEÞ
T þ ðEþ DEÞYTBT þBY ðEþ DEÞ

T

þ eBLf L
T
f B

T þ e
1ðEþ DEÞXET
f Ef X ðEþ DEÞ

T: ð19Þ

Here, no matrix inverse of Eþ DE is involved in the inequality.
For a given scalar Z > 0; according to Lemma 1 in Appendix A, there always exists

ðAþ DAÞX ðEþ DEÞ
T þ ðEþ DEÞX ðAþ DAÞTpZðAþ DAÞX ðAþ DAÞT

þ Z
1ðEþ DEÞX ðEþ DEÞ
T: ð20Þ

Furthermore, notice that, for any scalars m1 > 0; m2 > 0; m3 > 0; Q > 0; m1I 
 EcXET
c > 0;

m2I 
 EkXET
k > 0; m3I 
 EkQET

k > 0; Lemma 1 in Appendix A also has

ðAþ DAÞX ðAþ DAÞT ¼ ½ðAþLkFkEkÞ þLcFcEc	X ½ðAþLkFkEkÞ þLcFcEc	T

¼ ðAþLkFkEkÞX ðAþLkFkEkÞ
T þ ðAþLkFkEkÞXET

c ðm1I 
 EcXET
c Þ


1

� EcX ðAþLkFkEkÞ
T þ m1LcL

T
c

pðAþLkFkEkÞX ðAþLkFkEkÞ
T þ ðAþLkFkEkÞQðAþLkFkEkÞ

T þ m1LcL
T
c

pAXAT þAXET
k ðm2I 
 EkXET

k Þ

1EkXAT þ m2LkL

T
k þAQAT

þAQET
k ½m3I 
 EkQET

k 	

1EkQAT þ m3LkL

T
k þ m1LcL

T
c ; ð21Þ

where

XET
c ðm1I 
 EcXET

c Þ

1EcXoQ: ð22Þ

For any scalar m4 > 0; m4I 
 EXET > 0; there exists

ðEþ DEÞX ðEþ DEÞ
TpEXET þ EXETðm4I 
 EXETÞ
1EXET þ m4DEE


1ðDEE

1ÞT

pEXET þ EXETðm4I 
 EXETÞ
1EXET þ m4d
2I ð23Þ

and similarly, for any e1 > 0;

ðEþ DEÞYTBT þBY ðEþ DEÞ
T ¼EYTBT þBYET þ DEYTBT þBYDT

E

pEYTBT þBYET þ e
1
1 BYETEYTBT þ e1DEE


1E
TDT
E

pEYTBT þBYET þ e
1
1 BYETEYTBT þ e1d

2I : ð24Þ
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By Lemma 2 in Appendix A, with any e2 > 0; the following inequality also holds:

# ðEþ DEÞXCT

CX ðEþ DEÞ
T �

" #
p

#þ e2DEE

1E
TDT

E EXCT

CXET �þ e
1
2 CXETEXCT

" #

p
#þ e2d

2I EXCT

CXET �þ e
1
2 CXETEXCT

" #
; ð25Þ

where # and � denote some submatrices in Eq. (18). Therefore, by using the bounding results in
Eqs. (20)–(25), to ensure Eq. (18), it suffices to have

Y0 Bw EXCT ðEþ DEÞXET
f

BT
w 
gI 0 0

CXET 0 
gI þ e
1
2 CXETEXCT 0

Ef X ðEþ DEÞ
T 0 0 
eI

2
66664

3
77775o0; ð26Þ

where

Y0 ¼ Z½AXAT þAQAT þ m1LcL
T
c þ m2LkL

T
k þ m3LkL

T
k þAXET

k ðm2I 
 EkXET
k Þ


1EkXAT

þ AQET
k ðm3I 
 EkQET

k Þ

1EkQAT	 þ Z
1½EXET þ EXETðm4I 
 EXETÞ
1EXET þ m4d

2	

þ EYTBT þBYET þ e
1
1 BYETEYTBT þ e1d

2I þ e2d
2I þ eBLf L

T
f B

T: ð27Þ

Similarly, among Eq. (26), by Lemma 2 in Appendix A, with any e3 > 0; there exists

# ðEþ DEÞXET
f

Ef X ðEþ DEÞ
T �

" #
p

#þ e3ðDEE

1ÞðDEE


1ÞT EXET
f

Ef XET �þ e
1
3 Ef XETEXET

f

" #

p
#þ e3d

2I EXET
f

Ef XET �þ e
1
3 Ef XETEXET

f

" #
; ð28Þ

where # and � the corresponding submatrices in Eq. (26). Applying the results of Eq. (26) together
with Eq. (28), and the Schur complement followed by some rearrangement of matrix sub-blocks,
inequality Eq. (26) can be expressed as an LMI. Also, Eq. (22) can be expressed by an LMI by
using Schur complement. Therefore, we conclude that, for the uncertain system (4)–(5) with given
g > 0 and Z > 0; a state feedback control of form (11) can be constructed which could tolerate the
system uncertainties DM ; DC ; DK ; and controller gain variations DF such that the resulting closed-
loop system is robustly stable with disturbance attenuation g provided that there exists matrices
X > 0; Q > 0; Y and scalars e > 0; ei > 0; i ¼ 1;y; 3; mi > 0; i ¼ 1;y; 4; satisfying the following
LMIs:

O11 O12 O13 O14

� O22 0 0

� � O33 0

� � � O44

2
6664

3
7775o0; ð29Þ
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O11 ¼ ZðAXAT þ m1LcL
T
c þ m2LkL

T
k þ m3LkL

T
k þAQATÞ

þ Z
1ðEXET þ m4d
2IÞ þ EYTBT þBYET þ e1d

2I þ e2d
2I þ e3d

2I þ eBLfL
T
f B

T;

O12 ¼ ½Bw ZAQET
k ZAXET

k EXET BYET	;

O22 ¼ diag½
gI ;
Zðm3I 
 EkQET
k Þ;
Zðm2I 
 EkXET

k Þ;
Zðm4I 
 EXETÞ;
e1I 	;

O13 ¼ ½I 0 0 0 0 0	TEXCT½I 0	;

O33 ¼

gI CXET

� 
e2I

" #
;

O14 ¼ ½I 0 0 0 0 0	TEXET
f ½I 0	;

O44 ¼

eI Ef XET

� 
e3I ;

" #

and


Q XET
c

EcX 
ðm1I 
 EcXET
c Þ

" #
o0: ð30Þ

Moreover, a desired robust non-fragile HN state feedback control gain matrix is given by
F ¼ YX
1:

4. Simulation

This section gives a numerical example to demonstrate the applicability of the proposed
approach in Section 3. The robust stability of the steady state motion of an uncertain four-degree-
of-freedom 4-d.o.f. building model with controller gain variations is considered. The building
model is shown in Fig. 1, where xi; mi; ci; ki; i ¼ 1;y; 4 are the relative displacement, mass,
damping and stiffness of each storey, respectively, and m1 ¼ m2 ¼ 2� 1:05 ð106 kgÞ; m3 ¼ m4 ¼
1:05 ð106 kgÞ; k1 ¼ k2 ¼ 2� 350 ð106 N=mÞ; k3 ¼ k4 ¼ 350 ð106 N=mÞ; c1 ¼ c2 ¼ c3 ¼ c4 ¼
1:575 ð106 N s=mÞ: The basic structural system has been used in Refs. [1,21] for vibrational
control simulation. The dynamic equation of the system is given as in Eq. (1) with system matrices
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given by

M ¼

2:1 0 0 0

0 2:1 0 0

0 0 1:05 0

0 0 0 1:05

2
6664

3
7775 ð106 kgÞ; K ¼

1:4 
0:7 0 0


0:7 1:05 
0:35 0

0 
0:35 0:7 
0:35

0 0 
0:35 0:35

2
6664

3
7775 ð109 N=mÞ;

C ¼

3:15 
1:575 0 0


1:575 3:15 
1:575 0

0 
1:575 3:15 
1:575

0 0 
1:575 3:15

2
6664

3
7775 ð106 N s=mÞ:

It is assumed that each storey of the building model has a controller and B ¼ I in (1) so that
B ¼ ½0 I 	T in Eq. (4). The external disturbance corresponds to the earthquake excitation force
given in Ref. [1] and

Bw ¼ ½0 0 0 0 1:250 1:250 0:625 0:625	T

in Eq. (4). The output variables are chosen to be the displacements and velocities of each storey,
therefore, C ¼ I :
The uncertainties in the mass, damping, and stiffness matrices are, respectively, modelled as

jjDMM
1jjpd ¼ 0:1; DK ¼ LkFkEk � ð0:1KÞFkðIÞ; Dc ¼ LcFcEc ¼ ð0:1CÞFdðIÞ:
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Assume that the controller gain variation has structure

Lf ¼ af ½1 1 1 1	T; Ef ¼ ½1 1 1 1 1 1 1 1	;

where af is an adjustable parameter to describe the level of gain variation (in the range of 7107).
In this simulation, a time history of acceleration from 1940 El Centro (California) earthquake is
applied to the base of the building model [1,3].
As a means for comparison, we design an HN state feedback controller for the nominal system

(i.e., the system has no parametric uncertainties) and no consideration is given to controller gain
variations. When g ¼ 0:1; a controller gain matrix F0 is rounded to four decimal places to reflect
its finite word length implementation:

F0
0 ¼ 109

1:3961 
0:6994 
0:0005 0:0003 
0:0025 
0:0006 
0:0006 0:0004


0:7000 1:0465 
0:5491 
0:0000 
0:0016 
0:0020 
0:2629 0:0000

0:0028 0:0024 0:6976 
0:3501 0:0039 0:5829 0:0004 
0:0018


0:0006 0:0002 
0:3500 0:3477 
0:0010 0:0004 
0:0016 
0:0009

2
6664

3
7775:

This results in an equivalent perturbation equals

D0
F0

¼ 104

4:2346 
1:7259 4:1840 2:6815 
3:6102 
0:4524 0:1069 3:0021

4:3950 
3:8218 
0:2554 
3:9238 
1:1490 
2:7658 
4:8989 
0:6790


2:6115 2:0351 
2:0762 0:3787 4:3559 3:2244 
3:5548 0:7404

0:5419 2:9434 
1:8495 0:5553 1:3732 
1:7500 0:3116 
4:9466

2
6664

3
7775

such that F0 ¼ F0
0 þ D0

F0
: When F0 is used (that is, a full-digit realization), the output of

uncontrolled and controlled displacements of the fourth storey and the first storey are shown in
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Fig. 2. Displacements with F0 for nominal system: (a) displacements of the fourth storey and (b) displacements of the

first storey.
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Figs. 2(a)–(b), respectively. The displacements of the other two storeys have the similar varying
trend, which are omitted here for brevity. In addition, the velocities output of the four storeys can
give us the same information to explain our results, which are also omitted here for brevity. It can
be seen that a very good reduction in the vibration can be obtained. When the full-digit controller
F0 is used to control the structural system with above-mentioned parametric uncertainties and
additive controller gain variations, in which af ¼ 2:43� 106; the output of the simulation for the
uncontrolled and controlled displacements of the fourth storey and the first storey are shown in
Figs. 3(a)–(b), respectively. It can be observed that although the controller can control the
nominal system very well, it cannot attenuate the disturbance when these uncertainties occur. In
fact, the closed-loop control system becomes unstable when af is further increased. When we use
the controller gain matrix F0

0 instead of F0; which is also equivalent to adding a perturbation on
the controller gain matrix, the output of the simulation for the uncontrolled and controlled
displacements of the fourth storey and the first storey are shown in Figs. 4(a)–(b), respectively. It
is obvious the ability to attenuate the vibration is significantly degraded and the level of vibration
is unacceptable.
Finally, we design a controller using the proposed approach by solving the LMIs described in

Eqs. (29) and (30) for the same uncertain system and consider the controller gain variations.
When selecting g ¼ 0:01; Z ¼ 17; d ¼ 0:1; we obtain a non-fragile controller gain matrix F and a
four decimal place implementation is given by

F0 ¼ 109


2:1994 
2:4947 
2:1114 
2:1074 
2:2323 
2:2315 
2:2697 
2:2697


0:3154 
0:3539 
0:9165 
0:8812 
0:6085 
0:6098 
0:5343 
0:5345

0:1986 0:2384 0:6472 0:5451 0:4018 0:4027 0:3523 0:3527

0:0004 0:0004 
0:0340 0:0329 
0:0001 
0:0001 0:0002 0:0000

2
6664

3
7775
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Fig. 3. Displacements withF0 for uncertain system: (a) displacements of the fourth storey and (b) displacements of the

first storey.
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and the round-off error matrix is

D0
F ¼ 104

1:0809 
2:9042 
0:2158 
3:8307 
0:2163 
3:4901 2:3760 
2:2790


0:8093 0:6264 
3:4851 2:8223 3:8933 2:7184 
2:8325 4:7743


4:0923 4:2116 
3:4889 4:1823 1:8124 
1:7037 
1:9135 
1:5830

0:9268 2:9315 
2:3546 0:0024 3:0497 3:1137 2:9147 
4:3585

2
6664

3
7775;

where F ¼ F0 þ D0
F: When F is used to control the vibration, the output of the uncontrolled

and controlled displacements of the fourth storey and the first storey are shown in Figs. 5(a)–(b),
respectively. It can be seen that although there are parametric uncertainties in the system and
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Fig. 4. Displacements withF0
0 for uncertain system: (a) displacements of the fourth storey and (b) displacements of the

first storey.
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Fig. 5. Displacements with F for uncertain system: (a) displacements of the fourth storey and (b) displacements of the

first storey.
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controller gain variations, the non-fragile controller can still attenuate the vibration due to the
seismic disturbance very well in spite of uncertainties. As a matter of fact, a further increasing af

does not lead to an unstable effect as seen in the previous case with F0: When the rounded-off
non-fragile controller gain matrix F0 is used, the output of the uncontrolled and controlled
displacements of the fourth storey and first storey are depicted in Figs. 6(a)–(b), respectively. It
can be observed that the effectiveness of vibration attenuation is still very well preserved. Thus,
the non-fragile controller is very robust towards uncertainties since they are considered in advance
in the design procedure, and this is important in practical engineering applications.

5. Conclusions

This paper presents a new approach to design a non-fragile HN state feedback controller for
structural systems with mass, damping, and stiffness uncertainties and controller gain variations
based on a linear matrix inequality formulation. Due to no explicit inverse of mass matrix existing
in this approach, the uncertainties in mass, damping and stiffness can be described more naturally
and directly. Additive controller gain variations are also considered in this approach, which makes
the approach more robust and more applicable in vibration engineering practice. A numerical
example of four-degree-of-freedom building structure is used to illustrate the effectiveness of this
approach. It can be concluded that the proposed method can successfully deal with the
uncertainties in the structural system and its controller. Moreover, the control effectiveness is
significantly better than the controller designed simply according to the nominal system.
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Appendix A

The following lemmas used in this paper can be found in Refs. [22,23].

Lemma 1. Let A; L; E and F be real matrices of appropriate dimensions with jjF jjp1: Then, for any

real matrix P > 0 and scalar m > 0 such that mI 
 EPET > 0;

ðA þ LFEÞPðA þ LFEÞTpAPAT þ APETðmI 
 EPETÞ
1EPAT þ mLLT:

Lemma 2. Let M;N be real matrices of appropriate dimensions, for any scalar e > 0;

0 NMT

MNT 0

" #
p

eNNT 0

0 e
1MMT

" #
:

Lemma 3. Given matrices Y ; M and N of appropriate dimensions, then

Y þ MDN þ NTDTMTo0

for all D satisfying jjDjjp1 if and only if there exists a constant e > 0 such that

Y þ eMMT þ e
1NTNo0:
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